HUC 120601 Middle Brazos-Clear Fork

HUC 6 Watershed

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 21,485 8,295.5 118

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species								Potential Change in Habitat Suitability			Capability to Cope or Persist			
Ash	1	1						Scenario Scenario			Scenario	Scenario		SHIFT	SHIFT
Hickory	1	Abur	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	0	Abundant	0	High	4	5	Increase	2	2	Very Good	2	2	Likely	0	0
Oak	6	Common	7	Medium	8	9	No Change	3	2	Good	0	0	Infill	4	4
Pine	0	Rare	9	Low	4	3	Decrease	9	10	Fair	4	4	Migrate	0	0
Other	8	Absent	1	FIA	2		New	0	0	Poor	4	3		4	4
-	16		17	-	18	17	Unknown	4	4	Very Poor	4	5			
							-	18	18	FIA Only	2	2			

Potential Changes in Climate Variables

Temperatu	ire (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	57.4	58.5	59.8	60.4 🛶 🛶
Average	CCSM85	57.4	59.1	60.5	62.7
	GFDL45	57.4	60.4	61.0	62.4
	GFDL85	57.4	59.9	62.3	65.5
	HAD45	57.4	59.2	61.2	61.9
	HAD85	57.4	59.6	62.7	65.0
Growing	CCSM45	69.1	70.1	71.5	72.1
Season	CCSM85	69.1	70.9	72.3	74.9
May—Sep	GFDL45	69.1	72.9	73.5	75.8
, ,	GFDL85	69.1	72.7	75.5	79.7
	HAD45	69.1	70.8	72.4	72.8
	HAD85	69.1	71.3	74.5	76.5
Coldest	CCSM45	40.0	41.9	42.4	43.0
Month	CCSM85	40.0	41.7	42.4	43.6
Average	GFDL45	40.0	42.5	42.5	42.7
	GFDL85	40.0	40.7	41.7	41.9
	HAD45	40.0	40.5	42.2	42.3
	HAD85	40.0	42.8	44.1	45.3
Warmest	CCSM45	73.7	74.6	75.6	75.8
Month	CCSM85	73.7	75.3	75.9	77.4
Average	GFDL45	73.7	78.1	78.3	80.0
0	GFDL85	73.7	78.4	79.8	83.3
	HAD45	73.7	75.3	76.1	76.3
	HAD85	73.7	76.0	77.6	78.5

Precipitation (in)											
	Scenario	2009	2039	2069	2099						
Annual	CCSM45	21.4	22.5	21.2	20.9						
Total	CCSM85	21.4	20.8	22.7	21.9 🛶 🔶						
	GFDL45	21.4	21.5	25.2	20.3 ++++++++++++++++++++++++++++++++++++						
	GFDL85	21.4	21.2	22.7	20.9 ++++						
	HAD45	21.4	22.5	21.6	22.7 ++++						
	HAD85	21.4	21.6	19.6	22.0 +++++						
Growing	CCSM45	11.2	12.1	10.5	10.7 + + + + +						
Season	CCSM85	11.2	11.4	11.4	10.5 +++++						
May—Sep	GFDL45	11.2	11.4	13.4	10.6 +++++						
	GFDL85	11.2	11.6	11.9	10.8 ++++						
	HAD45	11.2	11.6	11.5	12.1 + + + +						
	HAD85	11.2	10.9	9.4	11.2 ++++++						

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Unknown

2

18

2

18

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

HUC 120601 Middle Brazos-Clear Fork

HUC 6 Watershed

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

								,	•	.,,	0				IVEIS	, .
Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO I	N
post oak	Quercus stellata	WDH	High	14.4	347.5	24.9	Sm. dec.	Sm. dec.	High	Common	Fair	Fair	Infill +	Infill +	1	1
ashe juniper	Juniperus ashei	NDH	High	11.7	262.0	15.9	Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			0	2
live oak	Quercus virginiana	NDH	High	12.1	247.2	21.0	Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good	Infill ++	Infill ++	1	3
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	35.8	172.2	11.9	Sm. dec.	Sm. dec.	High	Common	Fair	Fair			1	4
American elm	Ulmus americana	WDH	Medium	17.1	90.2	18.2	Lg. dec.	Lg. dec.	Medium	Common	Poor	Poor			0	5
cedar elm	Ulmus crassifolia	NDH	Medium	6.3	67.0	19.1	No change	No change	Low	Common	Poor	Poor	Infill +	Infill +	0	6
hackberry	Celtis occidentalis	WDH	Medium	11.8	61.5	12.3	Lg. dec.	Lg. dec.	High	Common	Fair	Fair	Infill +	Infill +	1	7
sugarberry	Celtis laevigata	NDH	Medium	18.8	37.2	6.7	No change	Sm. dec.	Medium	Rare	Poor	Very Poor			1	8
black willow	Salix nigra	NSH	Low	7.5	37.2	13.6	Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0	9
blackjack oak	Quercus marilandica	NSL	Medium	7.3	35.5	15.7	No change	No change	High	Rare	Fair	Fair			1	10
black oak	Quercus velutina	WDH	High	0.6	10.3	19.9	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0	11
eastern redcedar	Juniperus virginiana	WDH	Medium	4.4	6.0	24.1	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0	12
durand oak	Quercus sinuata var. sinuata	NSL	FIA	1.2	5.3	5.5	Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0	13
southern red oak	Quercus falcata	WDL	Medium	0.5	4.1	6.4	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0	14
Texas ash	Fraxinus texensis	NDH	FIA	0.1	2.3	0.6	Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0	15
pecan	Carya illinoinensis	NSH	Low	2.7	1.8	1.0	Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0	16
shagbark hickory	Carya ovata	WSL	Medium	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0	17
eastern redbud	Cercis canadensis	NSL	Low	0	0	0	Unknown	Unknown	Medium	Modeled	Unknown	Unknown			0	18

